1. HOME
  2. 応用脳科学アカデミー
  3. 2023年度
  4. アドバンス2023年度

応用脳科学アカデミー

     

アドバンス2023年度

「オンリーワンの個性を、チカラに変える。」レゾナックの障がい者雇用のご紹介:鈴木 秀明(株式会社レゾナック)

 これまでの身体障がいのある方を中心とした障がい者雇用から脱却し、知的・精神・発達障がいがあっても企業就労の場で、個人が持つ能力を最大化することのできる企業でありたいと考え、人事部内に知的・精神障がいのある方々をチームで...

人工知能は脳から何を学べばいいのか:銅谷 賢治(沖縄科学技術大学院大学 神経計算ユニット 教授)

 今日の人工知能は、パターン認識やゲームなど特定の課題では人間を超える性能を実現していますが、総合的に見ると人間や脳には遠く及ばない面がいくつもあります。特徴的なのは、1) 約20ワットと言われる低エネルギー消費で高度な...

共進化型AI (Co-evolutional AI) から職人芸的AI (Craft AI) へ ~段階的進化に基づく汎用神経回路網の自動構築の試み~:長尾 智晴(横浜国立大学 大学院環境情報研究院...

現在の機械学習の中心的な手法である深層学習(深層回路)の多くはフィードフォワード型の階層型神経回路網であり、脳内情報処理の中の条件反射的で単純な部分を実現しているに過ぎない。一方、実際の脳は階層型に限定されない複雑な構造...

計算論的精神医学入門:山下 祐一(国立精神・神経医療研究センター 神経研究所 疾病研究第七部 室長)

現行の精神障害の診断分類は、患者自身の主観的報告と医師による行動観察に基づいており、生物学的知見・病因・病態生理に基づいた体系になっていない。また、近年の生物学的知見の蓄積によっても、診断、重症度評価、予後や治療反応性予...

Modeling learning in the brain:豊泉 太郎(理化学研究所 脳神経科学研究センター 数理脳科学研究チーム チームリーダー)

脳は神経回路を経験に応じて変化させることで様々な環境に適応している。その際、神経細胞間の情報伝達を担うシナプスの強度は神経活動に応じて変化することが知られている。本講義では、神経細胞が効率的に情報を伝えているという最適化...

学習理論から迫る脳の意思決定と情動:吉本 潤一郎(藤田医科大学 医学部 教授)

過去の経験に基づき、将来を予測し、意思決定に役立てる能力を「学習」といいます。我々人間の脳は、意識することなく簡単に実現してしまっている学習ですが、どのような仕組みでそれが実現されているのでしょうか?本講義では、機械学習...

錯覚の効果と情報提示技術への応用:雨宮 智浩(東京大学 情報基盤センター 教授)

ヒトが外界から受ける感覚情報を処理するとき、刺激を感覚器官によって受容し、それらを総合的に意味づけし、経験や記憶に基づいて解釈をおこなう過程を経ます。五感情報ディスプレイはこうした感覚情報の流れを修飾し、編集するものであ...

脳の自由エネルギー原理:背景と応用:島崎 秀昭(京都大学 大学院情報学研究科 准教授)

本講演では脳の自由エネルギー原理が形成されてきた歴史的背景を,それを支える主要な実験結果や他分野との関わりとともに紹介する.自然刺激への適応に基づく古典的な認識の理論から,外界のモデルを脳の中に持つとするベイズ脳仮説,そ...

ベイズ力学 自由エネルギー原理は普遍的な脳理論なのか?:磯村 拓哉(理化学研究所 脳神経科学研究センター 脳型知能理論研究ユニット ユニットリーダー)

脳を構成する神経細胞は、どのように生物の優れた知能を実現しているのでしょうか?例えば、壁の近くにリンゴがあるとき、私たちはリンゴが壁の形に欠けているとは考えず、リンゴの一部が壁に隠れていると考えます。こうした経験に基づく...

予測符号化理論に基づく認知発達と発達障害:長井 志江(東京大学ニューロインテリジェンス国際研究機構 特任教授)

乳幼児の認知発達はどのような神経基盤に支えられているのか.乳幼児が獲得する社会性やそこに内在する個性の発生機序は,まだ未解明な部分が多い.本講演では,脳の統一原理とされる予測符号化理論に基づいた計算論的研究を紹介する.講...